Emerging Ideas II

Renewable Energy Forecasting

Phil Larochelle,
ORISE Postdoctoral Researcher
Contractor to ARPA-E

Wind is Variable

Actual Wind Production

Wind is Variable & Forecasts are Imperfect

Actual
Wind
Production
Day Ahead
Forecast

Wind is Variable & Forecasts are Imperfect

Actual
Wind
Production
Day Ahead
Forecast
4 Hour
Ahead
Forecast

State of the Art Forecasting Technology Performance

Table 2

Average Wind Forecast Error by Time Frame

	Forecast Error	
	Single Plant	Region
Hour Ahead		
Energy (% Actual)	10 – 15%	6 – 11%
Capacity (% Rated)	4 – 6%	3 – 6%
Day Ahead		
Hourly Energy (% Actual)	25 – 30%	15 – 18%
Hourly Capacity (% Rated)	10 – 12%	6 – 8%

Source: Smith, 2009.

Bad Forecasting Results In:

- Requirement of additional balancing reserves
- Underproduction/ curtailment of wind and solar
- Contingencies and outages

The Value of Wind Power Forecasting

Preprint

Debra Lew and Michael Milligan
National Renewable Energy Laboratory

Gary Jordan and Richard Piwko GE Energy

	10% Forecasting Improvement	20% Forecasting Improvement
14 % Wind Penetration	\$140 M	\$260 M
24% Wind Penetration	\$500 M	\$975 M

ISO-NE Data 2011/7/19, EIA 2009 Data

Techno-Economic Goal

Measurement and Data Analytics that Result in > 40% Improvement on State of the Art Forecasting Techniques for Wind and Solar Power

Technologies that Can Do It

Hardware: Improved Sensors (Accurate, Low-Cost and Remote)

Software: Data Aggregation, Analysis and Forecasting

Wind Sensing Techniques

Anemometer

RADAR

SODAR (Sound Detection and Ranging)

LIDAR: Light Detection and Ranging Look at the Doppler Shift of Back Scattered Light

State of the Art: Stationary Installations for the Characterization of Resources

Ranged LIDAR: Can we push this technology and make it ubiquitous? Can we extend the range > 1 km?

Solar Sensing Techniques: How do you deploy widely and process the data?

Total Sky Imagers

PV Cell = Fast Time
Scale Irradiance
Sensors

How do you log and communicate the data?

Software: Can we bring Cloud Computing Resources to Numerical Weather Prediction Models and Machine Learning?

How Can We Complement Existing DOE Projects such as the DOE/NOAA Wind Forecasting Improvement Project

Forecasting Program Name:

- **P** REDICTING
- RENEWABLE
- PTIMUM
- P RODUCTION OF
- EAT &
- **LECTRICITY**
- **T ECHNOLOGIES**

Emerging Ideas

Real Time Electricity Pricing

Timothy Heidel, ARPA-E Fellow

Demand for electricity varies

Varying demand yields low capacity utilization

The cost of generation varies

The cost of generation varies

BUT, the price consumers pay is constant

ISO-NE Data 2011/7/19, PEPCO Residential Rate 2012

Dynamic pricing could avoid the need for new capacity and reduce costs.

Dynamic pricing requires more granular measurements of electricity consumption.

 Smart meters are too expensive today: \$150-\$300 per meter (including meters, communications, back-office equipment, and installation).

Substantial cost reductions are needed

Existing approaches rely on a meter at every customer location

Smart Grid Customer Domain

Approaches that do not require new meters?

- Individual appliances measure power consumption
 - Need cheap, secure, accurate integrated power measurement.
 - Devices communicate with utility via Internet automatically
- Substation Measurement
 - Nonintrusive load monitoring at the distribution feeder level.

Hart, "Nonintrusive Appliance Load Monitoring," IEEE (1992)

Potential Program Name:

- PROVIDING
- R EAL TIME
 - INTELLIGENT
- C COSTS FOR
- **E** LECTRICITY

Emerging Ideas

Higher Efficiency Solar

Asegun Henry, ARPA-E Fellow

Collection

Cheap

Conversion

Efficient

Conversion

Collection

Conversion

What about power tower CPV?

Multi-junction cells with band pass light filters

Goal: > 60% efficiency, < \$1/Watt

Can We Handle The Heat?

Can We Handle The Heat?

Potential Program Name:

PHOTOVOLTAICS IGHLY **O** PTIMIZED HROUGH PTICAL **N** ETWORKS

Emerging Ideas

Low- or No-Water Power Plant Cooling

Nicholas Cizek, ARPA-E Fellow

Estimated US Water Flows 2005 (MGD), Total: 400 BGD

Estimated US Water Flows 2005 (MGD), Total: 400 BGD

30% Population Increase by 2030, Mostly DRY PLACES

Solley (USGS), 1998; EPRI, 2003; Campbell (US DOC), 1997

Traditional Power Plant Cooling

"Open Loop" /
"Once-Through"
Cooling

Q Evaporates H₂O

"Closed Loop" Cooling

Q Raises River Temp

- Raises Air Temp
- Evaporates H₂O

Problem Statement

Dissipate GW-scale low-grade heat (95 F) into air without evaporating water

Air Cooled Power Plant

Q Raises Air Temp Only
But $T_c = T_{air}$ instead of $T_{water} = T_{air,ave}$ 6-16% Less Electricity

Are there low-/no-water cooling tech pathways to achieve $T_c = T_{air,ave}$ instead of $T_c = T_{air}$?

Thermal Battery (low vapor pressure)

- Dirt
- Liquid besides water

Otherwise efficiency loss unavoidable

Low-/No-Water Cooling Tech Paths To Wet Cooling LCOE

Increase Surface Area – thermally conducting polymer, metal foam

Low-/No-Water Cooling Tech Paths To Wet Cooling LCOE

Increase Air Speed – elevate condenser

Wind ~10 m/s at 100 m

Low-/No-Water Cooling Tech Paths To Wet Cooling LCOE

Increase Thermal Conduction Coefficient – coatings, nanostructures

Non-Rankine bottoming cycle – parallel Stirling

Low-/No-Water Power Plant Cooling Techno-Economic Goal

Dry Cooled Power Plant LCOE

< 5¢/kWh

Low-/No-Water Power Plant Cooling Name

MPROVING

COOLING

FFICIENCY of

P O WER

PLANTS

